Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Arkasish Bandyopadhyay, ${ }^{\text {a* }}$ Babu Varghese ${ }^{\text {b }}$ and Sethuraman Sankararaman ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India, and ${ }^{\mathbf{b}}$ Sophisticated Analytical Instruments Facility, Indian Institute of Technology Madras, Chennai 600 036, India

Correspondence e-mail:
arkasish@chem_iitm_ac in
arkasish@chem.iitm.ac.in

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.059$
$w R$ factor $=0.154$
Data-to-parameter ratio $=12.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(Z)-3,6-Diethynyl-3,6-dihydroxycyclohexa-1,4-diene

In the title compound, $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{2}$, the four symmetry-related molecules are connected to each other through $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to form a helical chain along the b axis. The interconnected system is further extended along the c axis through $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to form a two-dimensional network. Unlike its trans isomer, no $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ or $\mathrm{C}-$ $\mathrm{H} \cdots \pi$ interactions are observed in the crystal structure.

Comment

The title compound, (I), which is a cis isomer, is a building block for acetylenic macrocycles. In the crystal structure of the trans isomer, (II), the molecule has a center of inversion with half the molecule forming the asymmetric unit and the cyclohexadiene ring ideally planar (Madhavi et al., 2000). In (I), the cyclohexadiene ring is not planar (Fig. 1 and Table 1); it assumes a flattened boat conformation, with atoms C2 and C5 0.146 (5) and 0.079 (5) A, respectively, out the plane defined by atoms $\mathrm{C} 1 / \mathrm{C} 6 / \mathrm{C} 3 / \mathrm{C} 4$.

(I)

The packing of molecules shows interesting intermolecular hydrogen-bonding patterns (Fig. 2 and Table 2). The hydrogen bond $\mathrm{O} 1-\mathrm{H}^{\prime} \cdots \mathrm{O} 2\left(x, \frac{1}{2}-y, z-\frac{1}{2}\right)$ is between glide-related molecules and $\mathrm{O} 2-\mathrm{H}_{2}^{\prime} \cdots \mathrm{O} 1\left(1-x, \frac{1}{2}+y, \frac{3}{2}-z\right)$ is between molecules related by a 2_{1} screw axis. These pairs with their inversion-related counterparts form hydrogen-bonded helical chains along the b axis. These chains are further linked via hydrogen bonds, forming a two-dimensional network parallel to (100). In (II), intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions were observed. However, the structure of (I) does not show any $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ or $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions. Crystals of (I) cleave easily about the (100) plane, which may result from the lack of hydrogen bonding along the a axis.

Experimental

Although the synthesis of the diol has been reported in 30-45\% yield (Ried \& Schmidt, 1957), we adopted a two-step strategy reported by Srinivasan et al. (2003) with $85-90 \%$ overall yield starting from p benzoquinone. Addition of two equivalents of lithium trimethylsilyl acetylide in dry tetrahydrofuran to p-benzoquinone at 195 K and

Received 6 October 2004 Accepted 28 October 2004 Online 6 November 2004
subsequent warming of the reaction mixture to room temperature furnished the diol as a mixture of Z and E isomers in the ratio 1:2. The isomers were separated by column chromatography. Deprotection of the TMS groups proceeded smoothly when the Z-diol was treated with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in degassed MeOH to give a pale-yellow solid, which was washed 3-4 times with CHCl_{3}. The residue was dissolved in EtOAc and a few drops of hexane were added until the solution became turbid. Slow evaporation of this solution in an NMR tube yielded colourless crystals of (I).

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{2}$
$M_{r}=160.16$
Monoclinic, $P 2_{\mathrm{d}} / c$
$a=10.598$ (2) A
$b=6.2646(10) \AA$
$c=14.153(3) \AA$
$\beta=102.06(2)^{\circ}$
$V=918.9(3) \AA^{3}$
$Z=4$

Data collection

Enraf-Nonius CAD-4	$R_{\text {int }}=0.048$
\quad diffractometer	$\theta_{\max }=25.0^{\circ}$
$\omega-2 \theta$ scans	$h=0 \rightarrow 12$
Absorption correction: ψ scan	$k=0 \rightarrow 7$
\quad (North et al., 1968)	$l=-16 \rightarrow 16$
$T_{\min }=0.941, T_{\max }=0.989$	2 standard reflections
1712 measured reflections	frequency: 60 min
1617 independent reflections	intensity decay: none
730 reflections with $I>2 \sigma(I)$	

730 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.059$
$w R\left(F^{2}\right)=0.154$
$S=1.00$
1617 reflections
127 parameters
$D_{x}=1.158 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25
\quad reflections
$\theta=10-15^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Block, colourless
$0.3 \times 0.2 \times 0.2 \mathrm{~mm}$

$R_{\text {int }}=0.048$
$\theta_{\text {max }}=25.0^{\circ}$
$h=0 \rightarrow 12$
$k=0 \rightarrow 7$
$l=-16 \rightarrow 16$
2 standard reflections
\quad frequency: 60 min
intensity decay: none

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0602 P)^{2}\right]$ where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.29 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.19 \mathrm{e}^{-3}$

Table 1
Selected torsion angles $\left({ }^{\circ}\right)$.

$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$11.4(5)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$5.9(5)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-12.7(5)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$-1.8(6)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$4.4(6)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$-7.2(5)$

Table 2
Hydrogen-bonding geometry $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}_{1}-\mathrm{H}^{\prime} \cdots \mathrm{O}^{\mathrm{i}}$	0.82	1.93	$2.708(3)$	159
$\mathrm{O} 2-\mathrm{H}^{\prime} \cdots \mathrm{O}^{\mathrm{ii}}$	0.82	1.93	$2.699(4)$	157

Symmetry codes: (i) $x, \frac{1}{2}-y, z-\frac{1}{2}$; (ii) $1-x, \frac{1}{2}+y, \frac{3}{2}-z$.
All the H atoms were located in difference Fourier maps. The acetylenic $\mathrm{C}-\mathrm{H}(0.93 \AA)$ and hydroxy $\mathrm{O}-\mathrm{H}(0.82 \AA)$ distances were idealized and refined using a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}(\mathrm{O})$. Since the six-membered ring is not planar, appropriate constraints are not obvious, and the four ring H atoms were refined isotropically, with a C-H distance restraint of 0.96 (1) \AA.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SIR92 (Altomare

Figure 1
The molecular structure of (I), showing the atomic numbering scheme and 50% probability displacement ellipsoids.

Figure 2
The crystal structure of (I), projected down the b axis. Dashed lines indicate hydrogen bonds. [Symmetry codes: (c) $x, \frac{1}{2}-y, z-\frac{1}{2}$; (d) $1-x$, $\frac{1}{2}+y, \frac{3}{2}-z$.]
et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and WinGX (Farrugia, 1999).

The authors acknowledge financial assistance from the V. W. Stiftung, Germany.

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Madhavi, L. N. N., Bilton, C., Howard, J. A. K., Allen, F. H., Nangia, A. \& Desiraju, G. R. (2000). New J. Chem. 24, 1-4.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Ried, W. \& Schmidt, H. J. (1957). Chem. Ber. 90, 2553-2561.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Srinivasan, M., Sankararaman, S., Hopf, H. \& Varghese, B. (2003). Eur. J. Org. Chem. 4, 660-665.

